Management of antithrombotic therapy in patients with LVADs

Lisa Baumann Kreuziger, MD, MS
Assistant Professor, Medical College of Wisconsin
Assistant Investigator, Blood Research Institute
Associate Medical Director, BloodCenter of Wisconsin

Lisa.BaumannKreuziger@bcw.edu
Disclosures

• Research Funding
 – Blood Center Research Foundation
 – Clinical and Translational Science Institute of SE Wisconsin/Advancing Healthier Wisconsin Foundation

• Research Samples
 – Thoratec (St. Jude/Abbott)

• CME
 – American Society of Hematology

• Hematologist
Outline

• Review coagulation cascade and effect of LVADs on coagulation
• Anticoagulation in patients with LVADs
• Antiplatelet therapy in patients with LVADs
Coagulation system

Collagen

Thrombin

Tissue Factor

XIIa

Complement & Bradykinin System

XIa

XII

IX

VIII

XI

IXa

XIIa

VIIa

VII

VIIIa

V

Va

Xa

Va

X

Fibrinogen

Fibrin

Poly-P

Thrombin

Collagen
LVAD Effect on Coagulation System

Normal

1. Platelets Bind to VWF
2. Platelets Activate
3. Coagulation Factors Activated
4. Thrombin → Fibrin
5. Fibrinolysis

LVAD

1. Impaired platelet/VWF binding
 Acquired VW Disease
2. Platelets Activated
3. Decreased Contact Pathway Factors
4. Thrombin formation
5. Fibrinolytic activation

Adult LVAD Antithrombotic Therapy

50% Anticoagulated
30% Aspirin

LVAD Implantation

heparin

Day 1
heparin

aPTT Goal: 40-60 s 60-80 s
Anti-Xa: 0.2-0.4 0.4-0.7

aspirin

Chest tube removal

Vitamin K antagonist (VKA)

Heparin Mechanism of Action

Unfractionated Heparin

Complement & Bradykinin System

Tissue Factor

AT

XII → XIIa

XI → Xla

IX → IXa

VIII → VIIIa

X → Xa

Thrombin

Collagen
Perioperative Heparin

- HMII BTT retrospective review
 - Bridging: No difference in thrombosis rates
 - Less bleeding requiring transfusion in patients not treated with heparin
- Retrospective cohort, matched historical controls
 - Thrombosis: 4.9% heparin vs. 27.0% no bridging
 - Multivariate analysis: OR=0.10 (CI 0.01–0.85)
- PREVENT trial: standardized bridging
- Dr. Guglin: study of bridging around elective procedures

Heparin Monitoring

aPTT

- More heparin = Less colored product
- Less heparin = More colored product

Anti-Xa

- More heparin = Less colored product
- Less heparin = More colored product

Heparin

Antithrombin
Heparin Monitoring

- Determine if your lab adds anti-thrombin to anti-Xa assay
- aPTT assays not standardized between institutions
- aPTT activator (Kaolin) not standardized between manufactures or lots
- aPTT must be calibrated to measure anticoagulation with heparin against anti-Xa
PTT vs. anti-Xa monitoring

Discordance higher if INR> 1.5 and thrombosis/hemolysis

Warfarin Mechanism of Action

Warfarin

Complement & Bradykinin System

Vit K epoxide Reductase

Collagen
Long-term Antithrombotic Therapy

- Vitamin K antagonist treatment standard

<table>
<thead>
<tr>
<th>INR Goal avg (range)</th>
<th>Axial</th>
<th>Centrifugal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3 (1.5-3.5)</td>
<td>2-3 (2-3.5)</td>
<td></td>
</tr>
</tbody>
</table>

54% people changed warfarin dose
- 22% difference in weekly dose
- 70% decrease in dose

Managing VKA therapy

<table>
<thead>
<tr>
<th>Drug or Factor</th>
<th>Half-Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warfarin</td>
<td>40 hours</td>
</tr>
<tr>
<td>Phenprocoumon</td>
<td>144 hours</td>
</tr>
<tr>
<td>Factor VII</td>
<td>6 hours</td>
</tr>
<tr>
<td>Protein C</td>
<td>8 hours</td>
</tr>
<tr>
<td>Factor II</td>
<td>50 hours</td>
</tr>
</tbody>
</table>

• Will NOT see the effect of warfarin dose change for 24-36 hours

INR Intensity

- Single center retrospective review
- 249 patients
- Median follow-up: 17.6 ± 13.6 months
- Optimal INR 2.6

Circ Heart Fail. 2016;9:e002680
Managing VKA therapy

• Pharmacist Run Anticoagulation = Improved Time-In-therapeutic Range (TTR)
• Patient Self Management= Improved Time-In-therapeutic Range

<table>
<thead>
<tr>
<th></th>
<th>Pharmacist Management (n=11)</th>
<th>Usual Care (n=44)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTR</td>
<td>44.4%</td>
<td>30.6%</td>
<td>0.03</td>
</tr>
<tr>
<td>Bleeding</td>
<td>0.23 ppy</td>
<td>0.33 ppy</td>
<td>0.55</td>
</tr>
<tr>
<td>Thrombosis</td>
<td>0.12 ppy</td>
<td>0.13 ppy</td>
<td>0.88</td>
</tr>
</tbody>
</table>

ppy=per-patient year

ASAIO Journal 2014; 60:193–198
Antiplatelet Mechanism of Action

Platelet Activation
- Thrombin
- Paracrine release of TXA, ADP, cAMP
- Aspirin (irreversibly inhibits COX, TXA2 synthase)
- Clopidogrel, prasugrel, ticagrelor, cangrelor, ticlopidine (inhibit aggregation, ADP receptor antagonists)
- Vorapaxar (GPIIb/IIIa receptor blocker)

Platelet Adherence
- Aspirin

Platelet Aggregation
- Thrombin
- TXA2, ADP, cAMP
- Eptifibatide, abciximab, tirofiban (GPIIb/IIIa receptor blockers)
- Dipyridamole (activates adenylate cyclase, increases cAMP levels)

PAR1
Long-term Antithrombotic Therapy

- Meta-analysis: Antiplatelet therapy variable

<table>
<thead>
<tr>
<th></th>
<th>Axial</th>
<th>Centrifugal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Hemorrhage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspirin</td>
<td>6-58%</td>
<td>9-44%</td>
</tr>
<tr>
<td>Aspirin + Dipyridamole</td>
<td>16-40%</td>
<td></td>
</tr>
</tbody>
</table>

Aspirin Dose

Hemorrhagic Events

<table>
<thead>
<tr>
<th>Number at Risk</th>
<th>Number at Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASA 81</td>
<td>ASA 81</td>
</tr>
<tr>
<td>+DPE</td>
<td>+DPE</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

ASA 81

<table>
<thead>
<tr>
<th>Number at Risk</th>
<th>Number at Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASA 325</td>
<td>ASA 325</td>
</tr>
<tr>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>30</td>
<td>49</td>
</tr>
<tr>
<td>21</td>
<td>35</td>
</tr>
<tr>
<td>14</td>
<td>32</td>
</tr>
</tbody>
</table>

Thrombotic Events

<table>
<thead>
<tr>
<th>Number at Risk</th>
<th>Number at Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASA 81</td>
<td>ASA 81</td>
</tr>
<tr>
<td>+DPE</td>
<td>+DPE</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

TRACE

EU-TRACE

- VKA therapy
- 91% Standard of Care
- 2-year rates (n=92)
 - Ischemic stroke=0.03 ppy
 - Device thrombosis=0.05 ppy
 - Bleeding= 0.10 ppy

US-TRACE

- VKA alone, ASA alone, None
- 82% enrolled due to bleeding
- 1 year Rates
 - Ischemic stroke=0.07 ppy
 - Device thrombosis=0.08 ppy
- 52% Subsequent bleeding

JHLT 2015; 34: 1542–1548.
Monitoring Anti-Platelet Medications

• 8% “non-responders” based on aggregometry

• Retrospective cohort (n=57)
 – **Goal**: TEG-MA 60-70 mmHg
 – **Regimen**: aspirin 81 → 325 → 650 mg/day + Dipyridamole (DPE) max 1 g/day
 – 68% received DPE
 • 68% received ASA + DPE
 – Bleeding 0.21 events/py

Summary

- Extreme variability in practice
- aPTT testing not standardized
- Consider use of anti-Xa testing especially in thrombosis
- VKA therapy with INR 2-3
- Limited evidence for modification of anti-platelet therapy based on testing